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1.0 Introduction 

In the Clive DU PA Model, most of the input parameters are treated as probabilistic. The term 

parameter is used to refer to any numerical quantity in the PA model.  This document provides 

an overview of the approach to construction of probability distributions for parameters. 

Note that the term parameter is used here because it is in common use in the PA and modeling 

community. However, since probability distributions are applied to these parameters, from a 

statistics perspective they should be termed variables, or even random variables. 

2.0 Types of Parameters 

Parameters of the PA model are mathematical constructs that represent a variety of different 

concepts. Assignment of a probabilistic distribution must consider the use of the parameter 

within the PA model. 

The probabilistic behavior associated with the input may also represent a variety of different 

concepts. The variation may represent aleatory variability, epistemic uncertainty, or some 

combination of those two. The appropriate probabilistic representation for the parameter can 

differ greatly depending on the appropriate representation. 

 Epistemic uncertainty represents lack of knowledge about the true value of the parameter. 

Hypothetically, data could be collected to reduce the uncertainty, which would then result 

in a distribution with less variation. 

 Aleatory variability represents inherent randomness in the “outcome” of the parameter. 

The outcome may represent changes through time or space or the characteristics of 

individual members of a population. Given assumptions about the population or modeling 

assumptions underlying the parameter, further information gathering does not reduce 

aleatory variability. Changing the modeling or population assumptions can lead to a 

change in the variability (e.g. changing the spatial extent a soil porosity distribution is 

applied to). 

Many parameters in the Clive DU PA contain at least some element of both epistemic 

uncertainty and aleatory variability, though the probabilistic construction is typically based on 

assuming one or the other. Although there are exceptions, for the most part, distributions 

developed assuming aleatory uncertainty are contained in the individual dose model (see the 

Dose Assessment white paper). Most other input distributions are developed based on epistemic 

uncertainty, although as noted, most parameters contain some element of both. It is often 

difficult to completely separate epistemic and aleatory uncertainty. Another, and perhaps better, 

way of framing the distinction is with respect to the spatial and/or temporal scale of each 

parameter. Most parameters in the Clive DU PA model represent long time frames or large areas, 

and the distribution of the average of the trait of interest is needed for the model. These cases are 

aligned more with the concept of epistemic uncertainty. However, the dose parameters are 

specific to individuals, representing points, space, and time frames that are specific to the 
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available data. These cases are aligned more with the concept of aleatory variability. In effect, in 

this model, epistemic uncertainty, upscaling and distribution of the average are related, and 

aleatory variability, and distribution of the data are related without the need for upscaling. 

These are important distinctions in the development of complex PA models, not just for model 

building purposes, but also for model interpretation and comparison with performance 

objectives. The PA model is constructed so that raw output doses are provided for each 

hypothetical individual included in the model, in each year of the model. Typically, risk 

assessment is based on the average risk. In that context, the average dose to the individuals in 

each year is the relevant statistic for each receptor group (ranchers, hunters, OHV enthusiasts). 

Since 5,000 simulations are performed, there are 5,000 estimates of the average dose in each year 

of the model. If the input distributions are specified as epistemic at the appropriate spatio-

temporal scale, then, by analogy with typical approaches to risk assessment, the 95
th

 percentile of 

the average dose in each year is the relevant statistic of interest. This has the added advantage of 

properly representing uncertainty in the average dose, and hence the uncertainty can be reduced 

through further data collection. 

Typically, doses generated from a PA are compared to performance objectives by using the 

“peak of the means”, however, this does not adequately address the issue of dose in a year 

(unless the peak of the mean dose is in the same year for every simulation). There are also 5,000 

estimates of the peak of the mean, however, it is not clear how to match a statistic from that 

distribution to the performance objectives. This model will allow exploration of this issue, to 

evaluate possible approaches to comparison of output doses to performance objectives. 

There are other sources of uncertainty that should also be considered in a PA model. These do 

not fall easily into either the epistemic or aleatory categories. 

 Conceptual uncertainty is typically not associated with a parameter, except in conjunction 

with the model as a whole. 

 Numerical uncertainty is similar to model uncertainty, except that it typically relates only 

to the mathematical aspect of the model, and whether or not a single number can 

adequately represent the process. 

These latter sources of uncertainty are largely ignored when constructing probabilistic 

distributions for parameters. These uncertainties are typically explored, to limited extent, with 

sensitivity analyses. However, where expert judgment is utilized in construction of a probability 

distribution, the presence of conceptual or numerical uncertainty may cause the expert to 

increase the variation associated with a parameter in order to (perhaps) produce a broader range 

of model outputs. 

More generally, the development of distributions for model input parameters in a PA model 

needs to accommodate a wide range of options that address spatio-temporal scales, correlation 

structures, available data, secondary data, literature review information, expert opinion and 

abstraction from more complex sub-models. Statistical methods that can be considered in each 

case are described in the following sections. This is a critical component of model development. 
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If not performed properly then the PA model runs the risk of the “garbage in – garbage out” 

syndrome, uncertainty and sensitivity analysis are compromised, and the results of the model are 

potentially meaningless. If performed properly, then everything falls into place regarding model 

results, comparison with performance objectives, and useful uncertainty and sensitivity analysis. 

3.0 Fitting Distributions to Data 

3.1 Distributions Representing Epistemic Uncertainty 

When data are available, whose distribution depends on a parameter of interest, then a Bayesian 

approach can be used to combine any available prior information with information from the data.  

The posterior distribution on the parameter represents the uncertainty about the value of the 

parameter. Prior information could be obtained through expert elicitation, but for nearly every 

parameter in the Clive DU PA model for which data are available, a non-informative prior is 

used. 

Most parameters in the Clive DU PA model correspond to physical quantities that represent an 

average of some type. Some parameters represent averages over time, as they represent typical 

behavior that will be used throughout the 10,000 year performance period, such as annual 

precipitation. Other parameters represent averages over space. For example, properties of 

vegetation represent an average vegetation effect across a model area, while soil properties 

represent an average across a volume of material represented by a model cell. When data are 

available that represent small amounts of time relative to the 10,000 years, or small 

areas/volumes relative to the model cells, then it is the mean of the data distribution that needs to 

be modeled. Under most regularity conditions (such as finite variance and the true parameter not 

on the border of the parameter space), the asymptotic distribution of a posterior distribution of a 

parameter is normally distributed (Gelman 2004). When a non-informative prior is used, the 

posterior distribution is generally well-approximated by the sample distribution of the statistic 

used to estimate the parameter. Thus, the posterior distribution for a mean μ is generally well-

approximated by a normal distribution, according to the Central Limit Theorem, if the sample 

size n is sufficiently large: 

∣X ~ N X ,
s

n   (1) 

 

where X  is the sample mean, and s is the sample standard deviation. This approximation can be  

generalized to most other types of parameters, with the posterior distribution well-approximated 

by: 

N , s.e.   (2) 
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where  is an estimate of the parameter of interest θ, and s.e.  is the standard error 

associated with the estimate. Stricter regularity conditions may be required for the general 

approximation to hold, and larger sample sizes may be needed for the posterior distribution to 

converge to normality. 

For parameters whose sampling distributions are difficult to calculate, due to the type of 

parameter or the small sample size, a bootstrap approach can be utilized to simulate a sampling 

distribution (Efron and Tibshirani 1994). The bootstrap method simulates a sampling distribution 

for a parameter by simulating new sets of data of the same size and structure as the existing data. 

The data simulation may be either parametric, assuming an underlying distribution for the data, 

or non-parametric, simulating from the empirical distribution of the data. The simulated 

bootstrap samples of the parameter are then fit to a distribution following the guidelines of fitting 

presented in Section , since the bootstrap data represent hypothetical data that can be precessed 

similarly to the processing of data that represent aleatory uncertainty. 

3.2 Distributions Representing Aleatory Variability 

For cases where the goal is to find a distribution that reflects the variability in the data, a 

goodness-of-fit approach is used. When the complete data set is available, the Akaike 

Information Criterion (AIC) is used to choose a distribution (Akaike 1974). The special case of 

data that are reported only as quantiles is address in Section . 

AIC provides a measure of fit based on the likelihood function that attempts to discourage over-

fitting by penalizing models with larger numbers of fitted parameter values. AIC could be used 

directly to choose a distribution by selecting the distribution that minimizes AIC. However, in 

order to allow for scientific judgment to choose between models that are close in fit, Akaike 

weights can be used for model selection (Burnham 2002). Akaike weights can be interpreted as 

conditional probabilities for each model when all models are treated as equally likely a priori. 

The Akaike approach is the following: 

 Choose a set of distributions to be considered: M1, M2, …, Mk. 

 Fit each distribution via maximum likelihood, and calculate the AIC for each model: A1, 

A2, …, Ak. 

 Calculate the Akaike weights for each model: 

W i=
e
−0.5⋅ Ai− Amin

∑
j= 1

k

e
−0.5⋅ A

j
− A

min   (3) 

 

where Amin  is the smallest AIC amongst the models being considered. Distributions with low 

weights are removed from consideration, and scientific considerations are used to choose 

between distributions with similarly high weights. 
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The following descriptions and figures (Figures 1 through 4) provide a list of distributions that 

are commonly considered for parameters in the Clive PA model: Normal, Lognormal, Gamma, 

Beta. Note that the uniform distribution is special case of the Beta distribution. Many other 

distributions are considered for special cases, but these four are adequate for most purposes. Log-

uniform distributions are used for Kd and solubility as described in the Geochemistry white 

paper, and triangular distributions are used for a few parameters in the dose model, which 

represent aleatory variability, when there was insufficient data and expert elicitation has not yet 

been performed. 
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 Normal – N( m, s ), where m is the mean, and s is the standard deviation.  This 

distribution is unimodal and symmetric and has support on the entire real line.  This 

distribution occurs naturally in many settings and is generally preferred for parameters 

representing averages or sums.  Since the normal distribution has infinite support, the 

distribution must be left-truncated at 0 (or some other natural boundary) for certain types 

of parameters. 

 

 

Figure 1. Examples of normal probability density functions 
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 Lognormal – LN( m, s, θ ), where m is the geometric mean, and s is the geometric 

standard deviation, and θ is a location parameter specifying the minimum.  This 

distribution is unimodal and right-skewed and has support on all real values greater than 

θ.  When the geometric standard deviation is near 1, the lognormal distribution closely 

approximates the normal distribution.  Physical quantities can often be modeled well with 

a lognormal distribution, and typically θ=0, forcing those quantities to be positive. 

 

 

Figure 2. Examples of lognormal probability density functions 

 

 



Fitting Probability Distributions   

6/5/2014  8 

 Gamma – Gamma( m, s, θ ), m is the mean, s is the standard deviation, and θ is a location 

parameter specifying the minimum.  This distribution is unimodal and right-skewed and 

has support on all real values greater than θ.  Fitted gamma distribution and lognormal 

distributions often appear quite similar, and the lognormal is typically preferred for 

physical quantities. However, the gamma distribution can fit certain types of tail behavior 

that the lognormal distribution cannot. 

 

 

Figure 3. Examples of gamma probability density functions 
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 Beta - Beta( m, s, l, u ), where m is the mean, s is the standard deviation, l is the lower 

bound, and u is the upper bound. The beta distribution can take on a variety of shapes. It 

is typically unimodal, but can be bimodal, with modes at the lower and upper bounds. 

The beta distribution is sufficiently flexible that it might provide a reasonable fit where 

other distributions cannot, and it is the only standard distribution that has finite support. 

For many parameters, finite support does not make good sense, so the beta distribution is 

typically only chosen when it is the only distribution that provides a reasonable fit, or 

when there is a natural lower and upper bound. 

 

 

Figure 4. Examples of beta probability density functions 
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4.0 Fitting Distributions to Reported or Elicited Quantiles 

In many cases, data are available only in the form of reported quantiles of the distribution.  A 

formal method for fitting a distribution and choosing amongst possible distributions is needed.  

While the focus here is on empirical quantiles, the same approach may also apply to quantiles 

achieved via expert elicitation, though some assumptions about the expert's knowledge base must 

be considered. This section begins with a definition of quantiles, and follows up with a 

likelihood estimation method for estimating distributions based on quantile input, and ends with 

an example. 

4.1 Quantiles 

Let X be a random variable whose distribution is of interest.  Suppose that a random sample of n 

observations from this distribution has been collected, X= {X i}i=1

n

, but that the reported 

summaries of this sample are restricted to a set of k empirical quantiles, {q j}j= 1

k

, corresponding 

to a set of proportions {p j}j=1

k

 (considered to be given in increasing order for convenience; i.e., 
p j p j 1 ). 

The empirical cumulative distribution function (CDF) is defined as:  

 
 

n

x<XI
=

n

x than less values  sampleof# 
=xF

i

X

ˆ , (4) 

 

where I is the indicator function. An empirical quantile corresponds to the inverse of the 

empirical distribution function: 

qi= F X

−1
pi  . (5) 

 

Since F X is a step function, the inverse is not uniquely defined. However, there are many 

common methods for defining a unique quantile (Hyndman and Fan, 1996). In practice, the exact 

method of defining the quantile is rarely cited. Thus, there is some potential error associated with 

a reported quantile. The relative size of the error is dependent on the underlying distribution and 

the quantile of interest. When sample sizes are large and/or the underlying distributions are 

smooth (as is the case with named families of distributions that one is likely to fit), the error 

associated with non-uniqueness should be small, though sensitivity analysis to this error should 

be performed in assessing fits based on reported quantiles. For the purposes of this document, q i  

will be considered to be uniquely defined. 
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4.2 Likelihood Functions 

If the original data set were available, then a reasonable choice for fitting the parameters of a 

distribution is maximum likelihood. Suppose that the random variable of interest, X, is assumed 

to come from a parametric family of distributions (e.g. Gaussian, gamma, etc.), that are uniquely 

defined by a set of parameters θ. The likelihood function for a sample X is defined as: 

L ∣X =∏i = 1

n

f X x i∣  , (6) 

 

where fX is the probability density (or mass) function corresponding to the parametric family of 

distributions. The maximum likelihood estimator (MLE) of the parameters is then defined by: 

= arg max L ∣X  , (7) 

 

or equivalently when maximizing the log-likelihood: 

= arg max ln L ∣X = arg max l ∣X  . (8) 

 

When the sample has been summarized by quantiles, the likelihood function for the data takes a 

different form. The reported data are effectively Y= {Y j}j=1

k 1

, where Yj is the number of 

observations between qj-1 and qj. 

Y j=∑ i = 1

n

I {q j− 1 X i≤ q j}  , (9) 

where q0=−∞  and qk 1= ∞  for notational convenience. 

The reported data thus follow a multinomial distribution: 

Y~ Multinomial k 1 n ,  , (10) 

where  

j = F X q j∣ − F X q j− 1∣  , (11) 

 

and FX represents the CDF for X. 

The likelihood function associated with the reported data is then: 
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L ∣Y = n!∏
j= 1

k 1 [ j ]
Y j

Y j!
∝∏

j= 1

k 1

[ j ]
Y j

 , (12) 

 

Where proportionality is with respect to the parameters of interest, θ.  Maximizing the log-

likelihood is thus equivalent to maximizing: 

l
* ∣Y =∑ j= 1

k 1

Y j ln[ j ]=∑ j= 1

k 1

n j ln[ j ]∝∑ j= 1

k 1

j ln[ j ]  , (13) 

where  

j=
Y j

n  . (14) 

Note that maximizing Equation (13) does not depend on knowing the sample size n, which may 

not be available for some data reports, and is only an abstract concept if the quantiles represent 

elicited values. 

For most parametric families, πj(θ) does not have a functional form that lends itself to analytical 

maximization of Equation (13). However, the CDF for most parametric families is sufficiently 

smooth that maximization routines work robustly. 

Note also that the use of maximum likelihood estimation is similar to intent to using Bayesian 

statistical methods with some types of non-informative prior distributions. This approach, 

therefore, is similar in intent for quantile data as the methods described in Section 3.1. Use of 

least squares minimization instead is not recommended, because the underlying assumptions will 

probably not be met (e.g., normality, independence, identically distributed data). 

4.3 Example: Gaussian Distribution 

Suppose that data are reported as in Table 1: 

Table 1. Example data, reported only as quantiles 

p1 = 0.05 = 5% p2 = 0.25 = 

25% 

p3 = 0.5 = 50% p2 = 0.75 = 

75% 

p5 = 0.95 = 95% 

q1 = 31 q2 = 58 q3 = 76 q4= 89 q5 = 120 

 

Five quantiles are reported, and thus the data are separated into 6 bins. In fitting a Gaussian 

distribution to these quantiles, π can be expressed in terms of the standard Gaussian CDF, Φ, as 

in Table 2. 
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Table 2. Calculation of quantities for the log-likelihood 

1= 0.05− 0= 0.05  1=
31−

 

2= 0.25− 0.05= 0.2  2=
58−

−
31−

 

3= 0.50− 0.25= 0.25  3=
76−

−
58−

 

4= 0.75− 0.50= 0.25  4=
89−

−
76−

 

5= 0.95− 0.75= 0.2  5=
120−

−
89−

 

6= 1− 0.95= 0.05  6= 1−
120−

 

 

Maximum likelihood estimators can thus be calculated: = 74.6  and = 25.8 , resulting in a 

value of -1.65 for the (right portion of) Equation (13).  The CDF and probability density function 

(pdf) for the fitted distribution are plotted in Figure 5. 
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Figure 5. Fitted distribution to the quantiles of the example data   
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5.0 Parameter Relationships and Conditioning 

Many parameters in the Clive DU PA model are related to one another. One parameter may be 

physically constrained by the value of another parameter, or they may simply tend to vary 

together. Information about the joint behavior is often unavailable, but where it is, the preferred 

approach is to construct joint distributions for the parameters. 

When joint data are available, a simple approach is to simply calculate the sample correlation of 

the parameters in the data and apply the same correlation to the parameters in the model to 

induce a joint distribution. A simple correlation structure may not fully capture the relationship 

between two parameters but often provides a reasonable first approximation. Where a correlation 

structure is used in the Clive DU PA model, the correlation algorithms implemented in GoldSim 

for Gaussian copula are used (Iman and Conover 1982, Embrechts et al. 2001).  

Where data and expertise are available, it is generally preferable to construct joint distributions 

for the parameters by constructing a marginal distribution for one parameter and conditional 

distributions for the remaining parameters. By fitting a distinct conditional distribution of the 

second parameter for each possible value of the first parameter, a more realistic relationship 

might be constructed than can be achieved through simple correlation. 

For example, for the population of American males the distribution of body weight changes as a 

function of age, even after reaching adulthood. Beyond age 20, the median body weight tends to 

increase as a function of age, until middle-age, after which median body weight decreases. The 

variation in body weight across the population also changes with the mean. Thus, a reasonable 

approach might be to model body weight as: 

BW males~ LN e
a b⋅ Age c⋅ Age

2

, e
 . (15) 

 

where a, b, c, and σ are estimated from data. This general approach was utilized for the Clive PA 

model (including for this body weight example), by using the fitting techniques outlined in 

Section  to quantile data available for age and body weight. 

6.0 Summary 

For the Clive DU PA considerable effort has been expended to provide statistical rigor and 

defense for the PA model. There are few, if any, previous examples of PA for low-level waste 

that have achieved this level of statistical support. Regulations and guidance that could be used 

are sadly lacking in sufficient definition of how PA models should be constructed and the role 

that statistics should play to ensure proper construction. The Clive DU PA model provides an 

opportunity for others who perform PA for low level radioactive waste to follow this path, and 

improve the statistical defense for PA more generally. 
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